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FACETING OF COPPER SURFACES AT 10000C

by W. M. Robertson

Abstract

Polished copper surfaces were observed to facet on annealing at

1000*C in wet hydrogen atmospheres. It was found that the quantity

-n PH20/P H2 must be greater than zero for extensive faceting to occur,

though some faceting particularly at the facet edges, can occur for

-n P,,20/PH2 as small as -3.5. The criteria for faceting to occur by

the reduction of surface free energy are discussed and it is shown that

facets near the (111) orientation are thermodynamically stable. The

effect of anisotropy of surface free energy on facet nucleation is

discussed.

The outlines of lens-shaped facets were measured. The shapes

and sizes of the lens-shaped facets are consistent with a volume diffusion

mechanism of facet formation. The observed profiles of the curved sur-

faces near separated linear facets are compared to theoretically calculated

profiles. The calculations by Mullins of facet profiles are extended

slightly to facilitate the comparison. The observed profiles are in rea-

sonable agreement with the calculated profiles for facet formation by sur-

face diffusionwith the surface diffusion coefficient the same on both

the low index and the complex surfaces.
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Introduction

The thermal faceting of metal surfaces has been observed under

a variety of experimental conditions. Some rather important questions

concerning this phenomenon, however, remain unanswered.

One point of controversy has been the question of the driving

force for facet formation. Is a faceted surface a minimum energy, equi-

librium structure? Or do facets form only when a kinetic process of

net evaporation is occurring at the surface? Recently, Moore( 1) has

critically reviewed the evidence on this question and indicates that eva-

poration is quite important if not the most important cause. Evidence is

presented in the present work which indicates that the driving force for

facet formation is the reduction of surface free energy in the system,

so that under the observed conditions facets are equilibrium structures.

A second point of uncertainty concerns the mechanism by which

facets form, assuming that a completely faceted surface is the equilibrium

structure. There are several possibilities for the mechanism: surface dif-

fusion; volume diffusion within the crystal; diffusion of the vapor in an

ambient gaseous atmosphere; and evaporation from the surface. Mullins ( 2 )

has analyzed the growth of facets by these various mechanisms. His

analysis offers possibilities for distinguishing which of the mechanisms

is predominant under given experimental conditions. In the present paper

these calculations are extended slightly, and evidence is presented which

indicates that under the conditions of these experiments volume diffusion

is the predominant mechanism of the formation of separated facets. It is
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observed, however, that the facet shapes are quite similar to the shapes

predicted by Mullins for the surface diffusion mechanism.

Experimental Procedure

The experimental method was to polish surfaces on copper samples,

anneal them in a wet hydrogen atmosphere and measure facet shapes from

interference photomicrographs of the faceted surfaces.

The material used was 99.999% pure copper from the American

Smelting and Refining Company. Many of the samples were sections of sym-

metric tilt bicrystals, grown in high purity graphite in vacuum as described

by Mullins and Shewmon 3 ) . The use of bicrystals is, of course, not es-

sential to the experiments; the bicrystals had been produced to measure

torques on the surfaces and provided surfaces of known orientation on

which to observe facets. The remainder of the samples were large-grained

polycrystals of the same copper. After melting and solidifying in a high

purity graphite mold in vacuum, the bar was reduced in thickness by twenty

percent by cold rolling, and annealed in dry pure hydrogen at 10509C for

twenty hours. (Attempts to grow large grains in the AS&R copper without

first vacuum melting were always unsuccessful.) The grains were oriented

(4)optically 4
, then repolished through Microcut polishing paper, and

finally electropolished (3 )•

The samples were annealed in a quartz tube inside a Nichrome

wound furnace for twenty to forty hours at 10000C t 50C. The results did

not vary appreciably with the time of annealing when the tine was long

enough to allow the facets to form extensively (longer than about four
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hours). The smnples were set in a high purity alumina boat and covered

with a loose-fitting cover made of 99.99% pure copper foil. The sample

temperature was measured by a Chromel-Alumel thermocouple placed next to

the copper cover. To provide the annealing atmosphere, a prepurified mix-

ture of 1% hydrogen, 99. nitrogen from Matheson Chemical Company was passed

through a Deoxo unit and then either (a) through a magnesium perchlorate-

Drierite drying column (dew point - -500C) or (b) directly into the fur-

nace (dew point = -200C), or (c) through distilled water cooled by an ice

bath (dew point - OC) or (d) through room temperature distilled water

(dew point - 25"C). Some runs were made with commercial, pure hydrogen

with the dew point controlled as in (a)-(d) above. The dew point was mea-

sured as the gas flowed out of the quartz tube at a flow rate of about

one-half cubic foot per hour.

The annealed surfaces were observed and photographed with a Zeiss

interference microscope and measurements were made on the enlarged micro-

graphs.

Results

The results will be presented in four sections. In the first

section the experimental conditions of atmosphere and surface orientation

under which facets were observed are described. In the second section

the conditions on the anisotropy of surface energy for facets to be stable

are discussed and compared with the anisotropy measured in earlier work (5'6 ).

In the third section measurements of the shapes of lenticular facets are

described and from these measurements evidence about the mechanimn of facet



formation is deduced. In the final section Mullins'(2) calculations on

the kinetics of facet formation are extended slightly and the predicted

profiles of the curved surfaces near facets are compared with the experi-

mentally observed profiles.

1. Experimental Conditions for Faceting

To obtain extensive faceting on oxygen free copper it was found

that the ratio pH20 /PH2 must be greater than about one. A ratio this

high is difficult to obtain by adding water to pure hydrogen, since it

requires a dew point that is well above room temperature. It is there-

fore not surprising that Benard et al. (7) did not observe faceting in

water/hydrogen mixtures, since they started with pure hydrogen. How-

ever, a water/hydrogen ratio greater than one is readily obtained by

adding water to a nitrogen-l% hydrogen mixture.

No faceting at all was observed for en pH2 O/PH2 less than -3.5.

Facets were observed for some orientations for -n pH20/PH2 = -3.5.

Figure 1 shows the orientations that faceted. For this water/hydrogen

ratio the extent of faceting was quite variable over the sample surfaces.

The grains of which the orientations are plotted in Figure 1 were near

the ample edges; away from the sample edges practically no faceting

occurred. The unfaceted orientations of Figure 1 were edge grains im-

mediately adjacent to heavily faceted grains, so that the orientation was

the only factor affecting whether or not faceting occurred. Similar dis-

tributions of faceting were observed by Moore(8 ) and by Moreau and BSnard (9 ).

A possible explanation for the difference between the edges and

centers of the specimens is that nucleation of facets may have been easier
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at the sample edges than in the sample centers. However, the individual

facets did not appear to be directly connected to the sample edge. The

nucleation of facets will be discussed further in the next section.

For In PH 2 0/pH 2? 0, all orientations were observed to facet.

For surfaces near (100) and (111) the entire surface broke up into fine

facets after an anneal of a few hours. For orientations fairly far removed

from (100) and (111) the facets were larger and more separated. This dif-

ference is associated with the ease of nucleation of facets as a function

of orientation. Near (100) and (111) nucleation is easy and many small

facets can form; further away nucleation is more difficult and only a few

facets will nucleate, each one then growing fairly large.

In every case the faceted surface consists of flat sections of

low index plane connected by more or less curved surfaces of high index.

In nearly every case the low index plane was (100) or (111); very rarely

a small area of (110) plane would appear, when the original surface was

close to (110). For some orientations both (100) and (111) facets would

appear on the same surface. Figure 2 shows this on a surface about 200

from (100) lying on the great circle between (100) and (111). It can be

seen that the facet surfaces are very steeply inclined to the original

surface.

The extent of faceting on one grain sometimes seemed to affect the

extant of faceting on a neighboring grain. When a highly faceted grain

abutted a lightly faceted one, there very often was a facet free zone

on the lightly faceted grain near the grain boundary, as illustrated in

Figure 3. An explanation has not been found for this phenomenon. It is



7

interesting to note that Dunn and Walter (10) found a similar effect in

the oxidation of silicon iron. They showed that it was due to grain boun-

dary motion. No evidence that boundary migration had occurred was found,

however, in the present case.

2. Driving Force for Facet Formation

There has been some controversy as to the driving force for facet

formation. Chalmers, King and Shuttleworth (11) proposed that the energy

of the system could be lowered by an initially flat surface breaking up

into facets of two or more other orientations, at least one of which

had considerably lower surface free energy, y, than the original surface.

Several later workers have explained their results on this basis, parti-

cularly Benard and co-workers(7 '9'12 "16) and Rhead and Mykura (17'18'19 )

However, Hondros and Moore (2'20'21) found that net evaporation of metal

from the surface appeared to be a necessary condition for facet formation

on silver. They proposed that the facets formed due to the kinetics of

evaporation and were not due to a minimization of surface free energy.

The conditions on the anisotropy of surface free energy for facets

to be stable will now be examined. The variation of surface free energy

with orientation is usually represented by the "y-plot", in which the

surface free energy of a surface with normal n is represented as a vector

parallel to n of length proportional to y. The y-plot for a crystal is

a three-dimensional closed surface with at least the symetry of the

(22,23)
crystal structure. Following Herring , consider a sphere passing

through the origin of the y-plot which is tangent to the y-plot at a given

orientation. If the tangent sphere lies everywhere inside tho. y-plot except
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at the tangent point, a smooth surface of the given orientation will

be stable with respect to a faceted surface. If, however, the y-plot

passes inside the tangent sphere at any point, then a faceted surface

will be more stable than the original smooth surface.

If the curvature of the y-plot at the orientation being considered

is greater than the curvature of the tangent circle, then the y-plot will

pass inside the circle in the vicinity of the point of tangency and a faceted

surface will be stable. Gruber (24) has shown that this case corresponds

to the condition

12y
y + - . 0 (1)

for stable facets. If the inequality is reversed, then a flat surface is

stable.

The derivative of surface free energy with respect to orientation,

(y/O) ' , was called a "torque term" by Herring 25 ) . Hykura(26'27 )

has shown that the quantity Z/y can be measured as a function of orienta-

tion. GJostein(28 ) has shown that relation (1) is equivalent to the condi-

tion that the magnitude of the slope of a plot of /y versus e should be

greater than unity, i.e., i (- l)j 1. The present authors mea-

sured ?//y as a function of orientation on copper surfaces which were also

(5)
faceting . Figure 4 shows a plot of Vr/y versus 0 for surfaces near (1ll)

along the great circle between (111) and (100) for conditions of extensive

faceting. It can be seen that for S near zero the magnitude of the slope

of the curve is greater than unity. Thus facets in this range of orienta-

tions are indeed thermodynamically stable. Figure 5, from an earlier work(6 )
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shows that stable facets would not be expected in a dry hydrogen atmosphere;

they were never observed under these conditions. It should be pointed out

however, that facets were observed near (100) under the conditions of

Figure 4, when the lf/y vs 8 curve would not indicate facets to be

stable(5); similarly, the Z/y vs 9 plot would not indicate stable facets

at either (100) or (111) under the conditions of Figure 1. These observa-

tions indicate that for at least one case facets are stable; but also under

some conditions facets may appear when they would not be expected due to

anisotropy of surface free energy.

Torques can be measured from the angles at the edges of facets,

assuming the facets are equilibrium structures. Figure 6, a section through

a facet, defines the relevant angles. Two relations are of interest:

be Yc sin 0 + -- cos 0 (2)

Ys - c cos 9 - - sin 0 (3)

These relations are readily derived from Herring's relations (25) for the

intersection of three interfaces by setting the energy and torque on one

interface equal to zero. They were used by lykura (27) to estimate torques

from facets on nickel. When 9 is of the order of fifteen degrees or more,

as is comnonly observed for facets, then 5y/<)S is usually quite small,

so that relations (2) and (3) are approximated by

)a Yc sin S (2a)
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Ts M Yc cos 0 1 (3a)

giving

1 s
> >tan . (2b)

Therefore tan e gives a lower limit for the torque at the low index plane

of a facet. This relation was used by Gjostein (29) to estimate torques

on faceted surfaces. Similarly, cos 8 is an estimate of the ratio of

the surface free energies of the low index and high index facet surfaces.

This relation was used by Moore(8). In the present work relations (2b) and

(3a) were used to estimate the torques and the ratios of surface free

energies for a number of facets which had (111) as the low index plane.

The results of these measurements are presented in Figure 7. There is

considerable scatter in the results, but the average value of -

is just slightly greater than the value at 0 = 0 of Figure 4; hence Figures

4 and 7 are in reasonably good agreement with one another. No edge angles

were measured for (100) facets because the mall size of the (100) facets
gave poorly defined interference fringe patterns at the facet edges.

The ratios of the surface free energies of (111) and high index

surfaces as measured at facets using relation (3a) are in reasonable agree-

ment with these ratios as determined by integration of the plot of ?f/y

versus 0 in Figure 4. Figure 4 gave ylll/y. - 0.960 ( 5 ) , while the average

value of o/y for (111) from Figure 6a is 0.952.

A further point that will now be examined is the fact that facets

were observed at angles of more than 0.15 radian from (ill), where the

slope of the ?'/y vs 0 plot becomes less than unity. Relation (1) indicates
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that in this region facets should not appear. However, relation (1) does

not include all cases for which facets can be stable. It applies to orienta-

tions for which the curvature of the y-plot is greater than that of the tan-

gent sphere so that the y-plot lies inside the tangent sphere infinitesimally

close to the point of tangency. However, facets are also stable if the

y-plot curvature is less than that of the tangent sphere at the point of

tangency, but penetrates the tangent sphere at a point a finite distance

away from the point of tangency. The two cases are illustrated on two-

dimensional sections of the y-plot in Figure 8. The plot of l/y vs 9 for

Figure 8b would be similar to Figure 4.

It is of interest to be able to determine from Figure 4 the total

range of orientations which should facet. To do this, consider Figure 9.

The sphere tangent at B just touches the y-plot at A. The angle 09 is the

limiting angle for stable facets. For 9 4 9' the y-plot pierces the tangent

sphere near A as in Figure 8b and facets are stable; for e )P91 the sphere

lies entirely inside the y-plot and the surfaces will not facet. On a

, /- vs @ plot, the sphere ADB gives a line of slope 1(08e 1); the y-plot

ACB gives a curve similar to the solid curve of Figure 4. The sphere and

the y-plot are tangent at 1; therefore the line of slope I and the V/y

vs 8 curve will cross at 0'. Also the y-plot and the sphere coincide at

9-B

points A and B; therefore f - - dO must be the same for both the

O-A

y-plot and the sphere. Therefore, to determine the limit of faceting, O',

given a le/y vs 0 curve similar to Figure 4, draw a line of slope I on the

\&urve such
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that the area beneath the line of slope I equal the area beneath the given

curve over the interval e - 0 to 8 - 8'. Then @I is the angle of the second

crossing point of the two curves. This is illustrated in Figure 4; the

dashed line has slope 1, and 9' is indicated. The value of 0' found is

about 0.19 radian ( = 110) so that orientations up to 0.19 radian from

(111) should facet. Actually surfaces further than this from (111)

were observed to facet. However, the solid curve of Figure 4 is only ap-

proximate, and 8 can vary considerably with small changes in the curve,

so it is not surprising that the agreement is not exact.

The considerations of t.he preceding paragraph are relevant to the

nucleation of facets. Mullins (2) has pointed out two cases: (a) when

the y-plot penetrates the tangent sphere in the vicinity of the tangent

point, an initially flat surface can lower its energy breaking up into

facets of orientations infinitesimally different from the original orienta-

tion so that no nucleation barrier exists; when the y-plot lies outside

the tangent sphere in the region of tangency but penetrates the sphere

at a point further removed, a small area of facet of an orientation con-

sideably different from the original orientation must be found, requiring

the expenditure of a finite amount of free energy and presenting an

activation barrier to facet formation. (In both cases there will also be

a nucleation barrier arising from the extra energy of a facet edge. So

far it has not been possible to estimate how strong a barrier this is.)

Orientations for which equation (1) holds fall in case (a) of

the previous paragraph, and there is no nucleation barrier to facet forma-

tion. This corresponds to the region of Figure 4 for which the magnitude
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of the slope is greater than unity. It was observed that orientations

near (111) were completely covered with small facets, the behavior that

would be expected if there were no nucleation barrier.

Orientations in Figure 4 for which the slope is less than unity,

but with 0 < e', fall in case (b). It was observed that for orientations

about ten degrees or more from (111) the facets were very often large and

widely separated from one another, the behavior that would be expected

if a nucleation barrier existed. In studies of the kinetics of facet

formation, to be described more fully in the next two sections, it is

desirable to be able to observe large, separated facets. Therefore these

studies will be most readily done on orientations for which the slope

of the I'/I plot is less than one, but for which 0 9 6'. For copper in

wet hydrogen these conditions are met in the range of about ten to twenty

degrees from (111).

One final point regarding the stability of facets is of interest

here. It was shown previously (30 ) on the basis of a step model of the

surface that the surface free energy as a function of orientation near

a cusp could be expressed as follows:

T(@)= f s cos + f 1 sin 0 + f 2 9
2  (4a)

2= + f 1  + (f 2 - Ys) , (8<< 1), (4b)

where y is the surface free energy per unit area at the cusp orientation,

f is a constant proportional to the free energy increase per unit length

of step added, and f 2 is a constant proportional to the interaction energy
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between single steps, i.e., the amount of free energy per unit length by

which a double step differs from the two constituent single steps. When

the total variation in y is not large,

T, 1:-- = _ + /2 f. 2(5)
Y Ts Ys , Ys

The slope of the V'/y vs 9 plotis given by the bracketed expression.

If f2 < 0 (attraction between steps), then 1L 1 aI> and facets are

stable. If f2 > 0 (repulsion between steps), then I - r1 4j 1 and
facets are unstable.

The same result can be obtained using the basic equation for the

(8)reduction of energy in faceting given by Moore 8)  If Yu is the surface

free energy of the original unfaceted surface and yf the average surface

free energy of the faceted surface, then the condition for faceting to

occur is

8 sin 0 +'c sin a
sin (a+)

From equation (4a), yz - y(O) and y c = y(az4). Hence the condition for

faceting reduces to

f2 2 (a+0) 2sn i
Tu" 2  f2  " sin(a+P) J

f 2 (-at) (sin(a+p) V a+p)

being greater than or less than zero. Hence Yu-f , 0 for f2 C 0
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(attraction between steps) and yu-yf < 0 for f2 > 0 (repulsion between

steps).

Thus, the criteria for faceting find complete agreement in the

step model of the surface; if steps attract one another, they tend to bunch

up and faceting occurs; if steps repel one another, facets are unstable

with respect to a smooth surface. It would be desirable to be able to

explain the attraction or repulsion of steps on an atomistic basis;

however, this has not yet been possible.

3. Mechanism of Facet Formation

In the previous section it was deduced that under the conditions

of these experiments the driving force for facet formation is the minimiza-

tion of surface free energy. In this section measurements are described

of the shapes of separated, lens-shaped facets. These shapes give in-

formation on the mechanism of facet formation.

Mullins(2) calculated the kinetics of widening of linear facets,

under the driving force of a minimization of surface free energy in the
th

system. He showed that the width of a facet is proportional to the p

root of the time since the facet started growing; p is 2 for formation

by evaporation-condensation of the metal in contact with its own dilute

vapor; p is 3 for evaporation-condensation in the presence of a surrounding

gas, where diffusion of the metal vapor in the gas limits the rate of

material transport; p is also 3 for formation by volume diffusion in the

crystal; p is 4 for facet formation by surface diffusion on the metal.

Mullins argued qualitatively that the tip of a lengthening facet will at-

tain a constant velocity, so the length of the facet will be proportional
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to the first power of the time. Therefore "the width of the facet at
th

a given point should be proportional to the p root of its distance

from the facet tip that originally swept by the point"'(2), where p has one

of the values given above.

It was noted earlier that separated linear facets were obtained

on surfaces ten to twenty degrees from (111). Typical facets of this

type are shown in Figure 10. The widths of such facets were measured

as a function of the distance from the facet end. Figure 11 is a typical

logarithmic plot of facet width, w, versus distance from the facet end,

1. The dashed line, a least squares line based on all the points, has

a slope of 0.394. Since w ac Il, the slope of this plot should equal

1/p. Figure 12 shows the frequency of occurrence of various values of

the slopes of such logarithmic plots. The average of 25 slopes is 0.422.

Before drawing conclusions about the value of 1/p from the above

data, an approximate calculation will be made to determine how accurately

the facet shape reflects the mechanism of formation. Near the end of

a facet, the facet sides are not parallel, but come together. The curva-

ture of the complex curved surfaces increases near the facet tip. This

curvature gradient along the length of the facet drives a flux of material

along the facet length. This flux could cause the facet shape to depart

1/pfrom the assumed relation, wet Xl. For the slope of the log w - log £

plot to have any significance, the flux along the facet length must be

much less than the flux perpendicular to the facet length.

Assume that the radius of curvature R of the curved surface is

;he same as that of a circle tangent to the curved surface at the edge
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of the facet (Point 0, Figure 6) and to the original surface. Then (2)

2m

where n = - tan a (n > 0), and m - tan 0. The material on the curved

surface has an excess chemical potential, &p, due to the curvature of

the surface: AL = T/ . The flux Jw tending to widen the facet is

.. 2D AIL 4D T

kT(w + 2Rm) kT(n/m 2)(l + n/m)w
2

where the appropriate diffusion coefficient D depends on the mechanism of

facet formation.

The flux J, along the length of the facet has the order of magni-

tude

7D d( = -2DY d 1(>
kT(n/m2)

It is assumed that

w = a -/p

where a is a proportionality constant, and w and . are measured in the

same units. So

d ap% / ' l +-

=, 2DT ap

kT(n/m )p vw
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The quantity of interest is the ratio of the two fluxes above:

r : _ aP( 1 + n/,a) w Cl + n/m)

jw 2p wp-1  = P

The ratio r should be small if the facet is to widen strictly as t /P

take as an appropriate value r - 0.1. Then the condition for the slope

of the log w - log I plot to be significant is

w 2(0.1) p
7 (1 + n/m) (6)

For all of the facets measured, n/m = 1. For Figure 11, p = 1/0.394 =

2.5.

So the slope of the portion of the curve for w & 0.251(small w

and X) is not significant; this point is marked by the arrow in Figure

11. For nearly all the facets measured, the minimumn value of I which

satisfies condition (6) lies between four and five millimeters at the

magnification used. Since the facet width was measurable for at least

30 mm along each facet, only the first few points are affected by the

flux along the facet length.

The above calculation indicates that the slope of the log w -

log I plot is significant in the elucidation of the mechanism of facet

formation. To eliminate the contribution to widening due to the flux

along the facet length, the slopes were recalculated, neglecting the

points for I < 5 am. The solid line of Figure 11 is a least squares line

based on the points for I r 5 mm. The recalculated slopes are shown in
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Figure 13. It can be seen that the recalculated values are more closely

grouped than the original values; the standard deviation o has decreased

from 0.087 to 0.064 for the twenty-five values. The final value of 1/p,

0.361, is quite close to 1/3; thus the mechanism of facet formation ap-

pears to be mainly volume diffusion in the crystal and/or diffusion in the

surrounding atmosphere.

Hullins ( 2 ) discussed the ranges of facet widths for which the

various transport mechanisms would be dominant. Surface diffusion would

be expected to predominate for very narrow facets, particularly near the

tip of an extending facet. Since the above calculation indicates that

near the tip the relation w = a -1/p should not be applicable because

of the flux along the facet length, it appears that facets growing by

surface diffusion will be difficult to observe.

A value of l/p near 1/3 is consistent with facet formation by

diffusion in the surrounding gas. However, Mullins indicated(2) that,

for gaseous diffusion to predominate, the vapor pressure of the crystal

2 2should be greater than -10 dynes/cm . The measured vapor pressure of

pure copper at 1000 C is -.10" dynes/cm . The presence of oxygen

in the atmosphere could conceivably cause the effective vapor pressure of

copper to be appreciably higher than in vacuum, but it seems unlikely that

the pressure would be increased by the factor of 104 necessary to explain

the present results. Hence, it can be concluded that gaseous diffusion

is unimportant in the present case.

The alternative explanation for l/p near 1/3 is volume diffusion

in the crystal. Under the conditions of these experiments, volume diffusion
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will be expected to predominate over surface diffusion for facets wider

than about five microns. This was the approximate width of the observed

facets, so the experimental results are consistent with facet formation

by volume diffusion in the crystal. It should be noted, however, that

several experimental studies of copper(3,32 -34) and silver(19) have shown

that surface diffusion is the predominant transport mechanism for the

growth of grain boundary grooves up to widths of ten microns and more.

Of course, the width for a facet which is comparable to a grain boundary

groove is not just the facet width but includes also the curved surfaces

adjacent to the facet, a total width in the present case of 15-20 microns.

In conclusion of this section, it appears that the predominant

mechanism for facet formation under the conditions of these experiments

is volume diffusion in the crystal.

4. Profiles of Curved Surfaces of Facets

Interference micrographs of separated facets such as Figure 10

show the profile of the curved surface near the facet. In this section

the observed profiles are compared with those calculated by Mullins(2 ),

and, to facilitate the comparison, Mullins' calculations are extended

slightly.

Mullins considered facet formation by three mechanisms:

(a) evaporation and condensation of the metal in contact with its dilute

vapor; (b) evaporation and condensation of the metal in contact with a

surrounding fluid, where diffusion of metal vapor in the fluid limits the

rate of material flow - the same treatment also covers volume diffusion

in the crystal; and (c) surface diffusion. For (a) and (c), he derived
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the shapes of the curved profiles and relations describing the kinetics

of formation. Case (b) was too complex to treat exactly so he derived

approximate relations describing the growth kinetics.

The observed profiles always showed a maximum (or minimum) some-

what away from the intersection of the curved and flat surfaces. A maxi-

mum like this is one of the features exhibited by the calculated profiles

for facet formation by surface diffusion (Figure 14). A similar maximum

might be expected for growth by volume diffusion in the crystal or vapor,

in analogy with the case for grain boundary grooving by volume diffusion
(35)

which forms a profile very similar to that developed by surface diffusion.

The existence of this maximum implies that mechanisms (b) and/or (c)

predominate, since the calculated profile for case (a) does not show a

maximum. The considerations of the preceding sections indicate that

volume diffusion is the dominant mechanism. Nevertheless, it is still

of some interest to compare the observed profiles with those predicted

for the surface diffusion mechanisms.

An observed (or calculated) profile at a given time is a plot of

y, the distance of the surface from the original flat surface, as a func-

tion of x, the distance from the middle of the facet. A given profile

has a constant shape which expands uniformly with time, t. The physical

parameters of the system on which the exact shape depends are as follows

m - tan 0 and n - - tan a (see Figure 6); B - Dca4 2Tc/kT, where Dc is

the surface diffusion coefficient on the curved surface, S1 the atomic
2

volume of the crystal atoms, -M the number of atoms per cm that partici-

pate in the diffusion, yc the surface free energy of the curved surface
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and kT has its usual meaning; (Ds/D )cos a 5 d cos a where D is the sur-

face diffusion coefficient on the simple plane. The exact form of y is

y(x~t) -m (Bt) 1/ 4 Z __x(7

where Z(u) - C3Z3(u) + C4Z4(u).

The quantities C3 and C4 are constants which depend on m, n and

d, while Z3(u) and Z4 (u) are functions satisfying the differential equa-

tion and boundary conditions for the system. To calculate C3 and C4,

Mullins introduced a parameter &j which describes the rate at which

the facet widens and deepens:

x A (Bt)1/4

y = - n a)(Bt)

where x and yl are the coordinates of the point of intersection of the

flat and curved surfaces on the facet profile. Muullins derived relations

from which C3, C4 and J could be calculated, and calculated these quan-

tities for the two limiting cases d cos a - 0 (zero diffusion coefficient

on the flat) and d cos a -cc (infinite diffusion coefficient on the flat).

Mullins tabulated values ( 3 6 ) of Z3 and Z4 and their derivatives for

comparison calculations for intermediate values of d cos a. These were

used to calculate u) for d cos a - 0.1, 1 and 10 and C3 and C4 for

d cos a - 1. The values of C3 and C4 calculated here are presented in

Table I (C3 and C4 for the two limiting cases are presented in Mullins'

original paper). The calculations for o are presented in Figure 15.

The facet profile for d coo a - 1 was calculated from equation (7) for
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Table I

The Constants C3 and C as Functions of a) for d cos a = 1

_ 3 C4

0 1.000 -9.402 x 10
-2

0.2 1.009 -9.676 x 102

0.4 1.032 -1.025 x 10-1

0.6 1.052 -1.124 x 101

0.8 1.081 -1.262 x 10- 1

1.0 1.096 -1.439 x 101

1.2 1.084 -1.663 x 10-1

1.4 1.040 -1.925 x 10-1

1.6 9.508 x 10' I  -2.232 x 101

1.8 8.047 x 101 -2.591 x 10-1

2.0 5.574 x 10 "  -2.981 x 101

2.2 2.208 x 10 "  -3.394 x 101

2.4 -2.421 x 10 "  -3.832 x 10-1

2.6 -8.676 x 101 -4.270 x 101

2.8 -1.644 -4.637 x 10 - 1

3.0 -2.618 -4.978 x 101

3.2 -3.800 -5.143 x 10' 1

3.4 -5.176 -5.221 x 10"1

3.6 -6.800 -5.019 x 10 "1

3.8 -8.563 -4.471 x 101

4.0 -1.048 x 10 -3.577 x 101

4.2 -1.250 x 10 -2.165 x 10'1

4.4 -1.447 x 10 -2.139 x 10 - 2

4.6 -1.627 x 10 2.431 x 10-1

4.8 -1.778 x 10 5.701 x 10'1

5.0 -1.888 x 10 9.822 x 10-1
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m/n - 1.04 and is presented in Figure 16, where it is compared to the

profiles calculated by Mullins for d cos a = 0 and d cos a - .

An important conclusion from the present calculations is this$

for small m/n it is difficult to distinguish between the cases d cos a

1 and d cos a - oa . In Figure 15 it can be seen that the curve for

d cos a - 1 falls quite near the d cos a = co curve for small m/n.

Similarly the d cos a = 1 profile in Figure 14 is very near the

d cos a = oo profile. Hullins obtained expressions for m/n as a function

of &) for the two limiting cases by expanding his equation number (21)*s

M = 0.6409 o + 0.09745 u2 0.002422 C) 3  (8a)n

d cos a -
f o0

1.281 w + 0.459 W 2 + 0.0588 j3 (8b)
n

d cos a = 0

If Hullins' equation (21) is expanded as a series for the general

case, it gives the foxm

mn a l + a a + a3 ) + ...... )

\d cos a) (. +b 2 ) +b 3  ..

/ A \2 2 3
+ 2 (c1& + c 2cW + c 3 ) + ... )

+ *........ (9)

In Mullins's paper(2), equations (8) were given incorrectly; the

correct forms are given here(36)



25

The constants al, a2 and a3 are the same as those of equation (8a). From

the form of equation (9) and the values of the a's, it can be seen that

for d cos a 0 0 and small &O, m/n will be very close to the curve of Figure

15 for d cos a = oo ; this is apparent for the d cos a = 1 curve for

m/n !S 1.5 and for the d cos a = 10 curve for m/n S 3. Equation (9) can

be rewritten in a slightly different form to obtain equation (8b) as

d cos a approaches zero. However, for d cos a # 0, the correct limiting

behavior for small a) is given by equation (8a).

Three of the observed facet profiles are shown in Figure 16. These

were determined by tracing along a given fringe on a print such as Figure

10, measuring the fringe height as a function of distance from the facet

center and then multiplying by the appropriate numbers to give the facet

the standard slope and size. Almost all of the separated facets observed

had m/n less than unity. It was noted earlier that, for orientations

quite near (111), where m/n would be larger than one, facets nucleated

very easily so that many small closely spaced facets formed rather than

large separated facets. Hence, the curved surface profiles were observable

only for m/n less than about unity.

Comparison of Figures 15 and 14 shows that the observed profiles

fall between the curves calculated for the two limiting cases d cos a - 0

and d cos a - oo . It is tempting to conclude from this that D and D€

do not differ by more than a factor of about ten. However, this con-

clusion assumes that surface diffusion is the mechanism of facet forma-

tion. The considerations of the previous section cast some doubt on

this assumption. If volume diffusion is for some reason the dominant
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transport mechanism, then transport through the volume under (or over)

the low index flat will occur with the same D as under (or over) the

curve region on either side. Thus this would fit the contour in which

Ds-- c

Rhead (19) has measured the profiles of separated facets on silver

and has calculated oj as a function of m/n for several of these facets.

He observed that his points fall quite close to the d cos a - oc curve,

but they appear to lie just as close to the d cos a = 1 curve. Rhead

measured the rate of grain boundary grooving on his faceted specimens

and from this concluded that in his case most of the matter was trans-

ported by surface diffusion. Hence the comparison of the calculated

and observed profiles seems to be valid in his case, and it can be con-

cluded that, at least for silver in air, D does not appear to be greatly

different from D
c

In conclusion of this section, it must be noted that, for experi-

mentally observable cases (m/n < 1), it is difficult to distinguish be-

tween d cos a = 1 and d cos a - so . From the available experimental

evidence, it appears that, assuming surface diffusion is the mechanism

of facet formation, the surface diffusion coefficients are roughly the

same on the simple surface and on the complex surface. This agrees with

the results of Choi and Shewmon(33'34) who found that the surface diffu-

sion coefficient varied by not more than a factor of three over the

entire unit triangle. However, the copper surfaces in these experiments

(5)
were covered with about a half monolayer of oxygen , while the surfaces

of Choi and Shewmon were free of oxygen. As Blakely has pointed out in
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his recent review (37)  impurity adsorption could either accelerate or

retard surface diffusion. There exists, so far, very little evidence

as to how adsorption affects surface diffusion.

Concluding Discussion

The evidence of section 3 of the Results indicates that volume

diffusion within the crystal can account for the observed facets. On

the other hand, in section 4 of the Results it was shown that the ob-

served facet profiles agree reasonably well with the profiles predicted

(2)
by Mullins' analysis , with D /Dc near unity. It must be pointed out

that neither in this work nor in the work of Rhead (19) have the kinetics

of facet formation been studied by actually observing the growth of

individual facets. It was attempted to follow the growth of individual

facets by annealing, cooling, examining, and then reannealing, but this

was unsuccessful. During the cooling md reheating, additional facets

nucleated near the original facets, impeding their growth. In some cases,

the facets appeared to stop growing or even to diminish in size on re-

annealing. Rhead( 19 ) reports similar difficulties in observing the

(38)
growth of individual facets, as does Moore . It would be desirable

to devise a method for actually observing the growth of particular

facets, so that the mechanism could be determined exactly. Since it has

been shown that it is possible to produce separated facets, it appears

that the kinetics of facet formation could be elucidated more clearly

by further work.
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From this work it is seen that knowledge of the v/T vs 9 curve

under the conditions of facet formation is helpful in deciding whether or

not the facets are thermodynamically stable. If they are stable, the

V/y vs 9 curve can indicate at which orientations it will be difficult

to nucleate facets, so that in this region separated facets for the study

of the kinetics of faceting can be produced. From the present results

it is seen that facets are stable for a range of orientations near (111)

and separated facets are produced in the range of orientations ten to

twenty degrees from (1ll).
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Figure 1. Faceting as a function of surface

orientation for In PH o/PH 2 -3.5.

Faceted surfaces (x); unfaceted
surfaces (o).



Figure 2. Surface of sample about 200 from (100),
showing both (100) and (111) facets.
X865; fringe spacing - 0.27 4.
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Figure 8. Schematic two-dimensional y-plots for faceting condi-
tions with a sphere tangent at orientation 9.
(a) No nucleation barrier to faceting;
(b) Nucleation barrier to faceting exists.
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Figure 9. Schematic y-plot ACD showing sphere
ADB tangent at 0', the limit of
faceting.



Figure 10. Separated facets showing the contours of the
curved, high index surface. X865; fringe
spacing = 0.27 4.
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Figure 15. Plot of 0) as a function of rn/n.
Attached numbers give values of
d cos a. Curves d cos a- 0 and
d cosn a - 00 from Mullins(2).
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